skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yan, Lili"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study an inverse problem of determining a time-dependent potential appearing in the wave equation on conformally transversally anisotropic manifolds of dimension three or higher. These are compact Riemannian manifolds with boundary that are conformally embedded in a product of the real line and a transversal manifold. Under the assumption of the attenuated geodesic ray transform being injective on the transversal manifold, we prove the unique determination of time-dependent potentials from the knowledge of a certain partial Cauchy data set. 
    more » « less
    Free, publicly-accessible full text available March 5, 2026
  2. We consider an inverse problem for the nonlinear Boltzmann equation with a time-dependent kernel in dimensions n \geq 2. We establish a logarithm-type stability result for the collision kernel from measurements under certain additional conditions. A uniqueness result is derived as an immediate consequence of the stability result. Our approach relies on second-order linearization and multivariate finite differences, as well as the stability of the light-ray transform. 
    more » « less
  3. We study inverse boundary problems for the magnetic Schrödinger operator with Hölder continuous magnetic potentials and continuous electric potentials on a conformally transversally anisotropic Riemannian manifold of dimension n ⩾ 3 with connected boundary. A global uniqueness result is established for magnetic fields and electric potentials from the partial Cauchy data on the boundary of the manifold provided that the geodesic X-ray transform on the transversal manifold is injective. 
    more » « less
  4. We show that the knowledge of the Dirichlet–to–Neumann map for a nonlinear magnetic Schrödinger operator on the boundary of a compact complex manifold, equipped with a Kähler metric and admitting sufficiently many global holomorphic functions, determines the nonlinear magnetic and electric potentials uniquely. 
    more » « less
  5. We study an inverse problem of determining a time-dependent damping coefficient and potential appearing in the wave equation in a compact Riemannian manifold of dimension three or higher. More specifically, we are concerned with the case of conformally transversally anisotropic manifolds, or in other words, compact Riemannian manifolds with boundary conformally embedded in a product of the Euclidean line and a transversal manifold. With an additional assumption of the attenuated geodesic ray transform being injective on the transversal manifold, we prove that the knowledge of a certain partial Cauchy data set determines the time-dependent damping coefficient and potential uniquely. 
    more » « less