Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider an inverse problem for the nonlinear Boltzmann equation with a time-dependent kernel in dimensions n \geq 2. We establish a logarithm-type stability result for the collision kernel from measurements under certain additional conditions. A uniqueness result is derived as an immediate consequence of the stability result. Our approach relies on second-order linearization and multivariate finite differences, as well as the stability of the light-ray transform.more » « less
-
We study inverse boundary problems for the magnetic Schrödinger operator with Hölder continuous magnetic potentials and continuous electric potentials on a conformally transversally anisotropic Riemannian manifold of dimension n ⩾ 3 with connected boundary. A global uniqueness result is established for magnetic fields and electric potentials from the partial Cauchy data on the boundary of the manifold provided that the geodesic X-ray transform on the transversal manifold is injective.more » « less
-
We show that the knowledge of the Dirichlet–to–Neumann map for a nonlinear magnetic Schrödinger operator on the boundary of a compact complex manifold, equipped with a Kähler metric and admitting sufficiently many global holomorphic functions, determines the nonlinear magnetic and electric potentials uniquely.more » « less
An official website of the United States government
